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ABSTRACT 

Operation and maintenance of offshore wind 
farms will be more difficult and expensive 
than equivalent onshore wind farms. 
Accessibility for routine servicing and 
maintenance will be a concern: there may be 
times when the offshore wind farm is 
inaccessible due to sea, wind and visibility 
conditions. Additionally, maintenance tasks 
are more expensive than onshore due to: 
distance of the offshore wind farm from shore, 
site exposure, and the need for specialized 
lifting equipment to install and change out 
major components.  
 As a result, the requirement for remote 
monitoring and condition based maintenance 
techniques becomes more important to 
maintain appropriate turbine availability 
levels. The development of a prognostics 
health management (PHM) capability will 
allow a strategy that balances risk of running 
the turbine versus lost revenue. Prognostics 
would give an estimate of the remaining useful 
life of a component under various loads, thus 
avoid component failure. 
 We present a state space model for 
predicting the remaining useful life of a 
component based on vibration signatures.  The 
model dynamics are explained and analysis is 
performed to evaluate the nature of fault 
signature distribution, and an indicator of 
prognostic confidence is proposed. The model 
is then validated under real world conditions.* 

                                                             
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 

 

1 Introduction 

It is anticipated that 20% of the United States electrical 
energy will come from wind power by 2020. A larger 
percentage of that power will come from offshore wind 
turbines. Current offshore wind turbine initial capital 
costs are 30-50% higher than onshore. These costs are 
offset by higher capacity factors (anticipated at 31%) 
and higher mean wind speeds resulting in higher energy 
yields (as much at 30%, Meyer, 2009). 
 Offshore power will have its challenges. Operations 
and Maintenance cost will be higher. These locations 
will be more remote than on shore systems. 
Additionally, they will typically be larger, requiring 
purpose built lifting equipment to install and change 
out major component. Further, there will be times when 
the offshore turbine in not accessible for maintenance 
due to poor weather conditions. This will require 
remote sensing and condition based maintenance 
techniques for diagnostics and prognostic, e.g. the 
development of a PHM system (Kuhn et al., 1997). 
 Diagnostics is concerned with detection of a 
changing condition related to a component failure. 
Once a changing condition is detected, prognosis 
provides the time to failure (remaining useful life or 
RUL) and an associated confidence in that prediction 
(Vachtsevanos et al. 2006). This information, RUL and 
confidence, is used in different way by the maintainer 
and operator.  
 In general, prognostics will allow offshore turbines 
to be operated at lower cost by: 

• Opportunistic maintenance practices 
• Improved Readiness/Reduction in 

unscheduled maintenance 
                                                                                               
in any medium, provided the original author and source are 
credited. 
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• Activation of a “just in time” part delivery,  
• A reduction in the overall number of spares 
• Operating the turbine in a conservative 

manner to reduce the chance of failure. By 
operating under less stressful loads, extend the 
life of a component until maintenance can be 
performed. 

2 STATE SPACE MODELS FOR 
PROGNOSTICS 

State space representation of data provides a versatile 
and robust why to model systems. We start with the 
definition of the states, and the basic principles 
underlying the characterization of phenomena under 
study.  Then we show how the states propagate as a 
stochastic process.  
 The choice of which type of state space model to 
use is driven by the nature of the system dynamics and 
noise source. If linear dynamic, with Gaussian noise, a 
Kalman filter (KF) is used. If it is a non-linear process, 
with Guassian noise, a sigma-point Bayesian process 
(e.g. unscented Kalman filter - UKF) or extended 
Kalman filter (EKF) is appropriate. For non-linear 
dynamics with non-linear noise, a sequential Monte 
Carlo method employing sequential estimation of the 
probability distribution using “importance sampling” 
techniques is used. This method is generally referred to 
as particle filtering (PF) (Candy 2009). 

2.1 A State Space Model  

A state space model estimates the state variable on the 
basis of measurement of the output and input control 
variables (Brogan 1991). In general, a system plant can 
be defined by:  

Cxy
BuAxx

=

+=&

          (1) 
where x is the state variable, x&  is the rate of change of 
the state variable, and y is the output of the system. 
 An observer is a subsystem used to reconstruct the 
state space of the plant. The model of the observer is 
the same as that of the plant, expect that we add an 
additional term which includes the estimated error to 
account for inaccuracies the A and B matrixes. This 
means that any hidden state (such as RUL) can be 
reconstructed if we can model the plant (e.g. failure 
propagation) successfully. The observer is defined as: 

( )xCyKBuxAx ˆˆˆ !++=&       (2) 

where x&̂  is the estimate state and 

! 

Cˆ x is the estimated 
output. The matrix K is called the Kalman gain matrix 
(linear, Gaussian case), it is a weighting matrix that 
maps the differences between the measured output y 
and the estimated output 

! 

Cˆ x . A KF can be used to 

optimally set the Kalman Gain matrix. Figure 1 
represents a system and its full state observer. 
   

 
Figure 1 Example of Plant and State Observer 

2.2 The General Case: Kalman Filter  

A KF is a recursive algorithm that optimally filters the 
measured state based on a priori information such as 
the measurement noise, the unknown behavior of the 
state, and relationship between the input and output 
states (e.g. the plant), and the time between 
measurements. Computationally it is attractive because 
it can be designed with no matrix inversion and it is a 
one step, iterative process. The filtering process is 
given as: 

Prediction 
 Xt|t-1 = A Xt-1|t-1             State 
 Pt|t-1 = A Pt-1|t-1A’ + Q              Covariance 
Gain  
 K = Pt|t-1 C’ [C Pt|t-1 C’ + R]-1  
Update  
 Pt|t = (I – KC) Pt|t-1           State Covariance 
 X t|t = Xt|t-1 + K(Y-H Xt|t-1)      State Update 

where: 
t|t-1 is the condition statement (e.g. t given the 

information at t-1) 
X is the state information (x, xdot, x dot dot) 
Y  is the measured data 
K is the Kalman Gain 
P is the state covariance matrix 
Q is the process noise model 
C is the measurement matrix  

    R is the measurement variance 

For nonlinear systems with Gaussian noise (UKF or 
EKF), the state prediction is now a function of Xt-1|t-1, A 
and C is the Jacobian (e.g the derivative of the 
measurement with respect to time) (Candy 2009).  
 For non-linear, non-Gaussian noise problems, 
particle filters (PF) are attractive.  PF is based on 
representing the filtering distribution as a set of 
particles. The particles are generated using sequential 
importance re-sampling (a Monte Carlo technique), 
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where a proposed distribution is used to approximate a 
posterior distribution by appropriate weighting. 
 An important consideration for Monte Carlo 
methods (such as PF) is that it requires an estimate of 
the posterior distribution using sample based simulation 
(Candy 2009).  Starting with Bayes rules: 

( ) ( ) ( )
( )Y

XXYYX Pr
Pr|Pr|Pr !=    (3) 

where X  is the distribution of the measurement, and Y 
is the resampled distribution, we can see that the 
performance is heavily conditioned on the selection of 
measurement PDF (distribution, first and second 
moment). However, this estimation of the X for the 
linear (KF) and non-linear (EKF) case is also 
important, as it determines the R the measurement noise 
model. 
 For all models, the best estimate for the first 
moment is the state-space model itself. It is assumed 
that one of the states of interest is the expected value of 
the measurement. In general, the second moment 
(variance: σ2) is assumed constant. This is a poor 
assumption. In this study, an accessory calculation of 
variance was made using a recursive estimate: 

( ) [ ]( )211|
2
1

2 |1 YYXEa ttttt !+!= !!! C""     (4) 
 Using a Butterworth filter design and a normalized 
bandwidth of 0.1, a is given as 0.2677. The 
implementation of the EKF and PF was done utilizing 
the fine Rao-Blackwellized  particle filters  Matlab 
toolbox from J Hartikainen and S. Sarkka (Hartikainen 
and Sarkka  2008). 

3 SYSTEM DYNAMICS  

The state space model can be constructed as a parallel 
system to the plant (e.g. the system under study). This 
requires an appropriate model to simulate the system 
dynamics. In general, failure modes propagating in 
mechanical systems are difficult to model at a level of 
fidelity that would generate any meaningful results (e.g. 
Health and RUL). We needed a generalized, data 
driven process that would model the plant adequately 
enough to generate RUL with small error. 

Since 1953, a number of fault growth theories have 
been proposed, such as: net area stress theories, 
accumulated strain hypothesis, dislocation theories, and 
others (Frost et al 1999, Frost 1959). Through 
substitution of variables, many of these theories can be 
generalized by the Paris Law:  

( )mKDdNda !=       (5) 
which governs the rate of crack growth in a 
homogenous material, where:  

da/dN is the rate of change of the half crack length 
D is a material constant of the crack growth 

equation 

ΔK is the range of the K during a fatigue cycle 
m is the exponent of the crack growth equation 

The range of strain, ΔK is given as: 

 ( ) 2/12 aK !"#=$      (5) 
here  

σ  is gross strain 
α is a geometric correction factor 
a is the half crack length 

 
The use of Paris’s law for the calculation of RUL was 
given by (Bechhoefer 2008) and (Orchard et al. 2007), 
but lacking a measure of confidence (e.g. how good is 
the prognostics). Confidence, or a measure of how 
good the model is, is a requirement for a PHM system 
(Vachtsevanos et al., 2006). 

These variables are specific to a given material and 
test article. In practice, the variables are unknown. This 
requires some simplifying assumptions to be made to 
facilitate analysis. For many components/material, the 
crack growth exponent is 2. The geometric correction 
factor α, is set to 1, which allows equation (4) to be 
reduced to: 

! 

da dN = D 4" 2#a( )               (6) 
The goal is to determine the number of cycles, N, 

remaining until a crack length a  is reached.  Taking the 
reciprocal of (6) gives: 

! 

dN da = 1
D 4" 2#a( )            (7) 

Integrating gives the number of cycles (N) 
remaining.  Note that N for synchronous systems (e.g. 
constant RPM) is equivalent to time by multiplying 
with a constant. 

 

! 

N = dN da
ao

a f"
= 1

D 4# 2$a( )da"

= 1
D 4# 2$( ) ln af( ) % ln ao( )( )

        (8) 
Equation (8) gives the number of cycles N from 

the current measured crack ao to the final crack length 
af. The measured component condition indicator (CI) 
will be used as a surrogate for crack length a. Given a 
suitable threshold set for af  (Bechhoefer and Bernhard 
2007) then N is the RUL times some constant (RPM for 
a synchronous system).  

The material crack constant, D, can be estimated 
as: 

! 

D = da dN * 4" 2#a( )   (9) 
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In practice gross strain will not be know. Again, a 
surrogate value, such as torque, will be as appropriate.  

3.1 Prognostic and Confidence in the Prognostics 

In practice, a prognostic or PHM capability would be 
used to schedule maintenance or assist in assets 
management. Maintainers and operators will perform 
management of the offshore assets. They will need an 
intuitive, simple display that conveys information on: 
current health, RUL, and confidence in the RUL 
prediction. 

Model confidence is essential in any RUL 
prediction (Vachtsevanos et al., 2006). For any RUL 
calculation, given 1 hour of nominal usage, the RUL 
should decrease by 1 (e.g. dN/dt is approximately -1: on 
hour of life is consumed). Further, a measure of model 
drift or convergence is the second derivative d2N/dt2: a 
value close to zero indicates convergences. When these 
conditions are met, the model used for calculation of 
the RUL is consistent, and is indicative of a good 
estimate of the life of the component. 

We will use visual cues for of the prognostics 
based on model convergence. The prognostic color 
reflects the confidence:  

• Low Confidence: Yellow, abs(dN/dt-1) > 3 
and abs(d2N/dt2) >  0.5 

• Medium Confidence: Blue abs(dN/dt-1) > 2 
and abs(d2N/dt2) >  0.5 

• High Confidence: Green, abs(dN/dt-1) < 2 and 
abs(d2N/dt2) <  0.5 

 
Another aspect of the prognostic model is to 

predict what the health of the component will be some 
time in the future. For a given state space mode, the 
RUL or any predicted health is an expectation based on 
the current state and future usage (e.g. damage or 
stain). The Paris law is driven by delta strain: changes 
in strain will affect the RUL (eq 5). Future health is 
then based on the mean strain, and a bound on that 
strain. This strain information could be based on 
forecast weather or usage for a wind turbine. The health 
at any time in the future is then: 

! 

af = exp ND 4" 2#( ) + ln ao( )( )      (10) 

The upper and lower bound on the future health af can 
then be calculated through bounding the delta strain 
(e.g. 5% and 95% value of delta strain).  

3.2 Normality of Plant/System Noise 

Selection of the appropriate state space model is 
dependent not only on the system dynamics, but the 
measurement noise of the system. We investigated the 
probability density function of the measurement noise 
by using a kernel smoothing density  estimate of 100 
data points (49 prior and 50 after a point of interest) 

and compared this to a Gaussian distribution with mean 
and standard deviation of the kernel (figure 2). 

 
Figure 2 Estimate of PDF of the measurement noise. 
 

For example, figure 2 displays the data (signal 
average RMS data associated with a hydraulic pump), 
and estimates of the measurement PDF at point 200 
(prior to fault propagation) and at point 750 (well into 
fault propagation). The PDF estimate is plotted against 
the Gaussian PDF based on the mean and standard 
deviation of the kernel. Even given that this data is 
inherently non-stationary, the kernel estimate is close to 
Gaussian. For this reason (non-linear dynamics, 
Gaussian noise), an EKF was used for the state space 
model. 

4 DEMONSTRATION OF PHM 

For this application of a state space observer, it was 
determined that the system dynamics were nonlinear, 
and that the measurement noise was Gaussian. For this 
reason, and EKF model was constructed. The states of 
the model are: 

• a: half crack length with is linear with the 
measurement.  

• da/dN: rate of change of half crack length 
with respect to the number of cycles, which is 
linear with time. 

• N: the number of cycles remaining, which is 
linear with time (synchronous system) and is 
non-linear with respect to half crack length 
(nature log). 

• dN/dt: rate of change in number of cycles 
with respect to time, which is linear with time 

• d2N/dt2: the acceleration of the number of 
cycles, which is linear with time. 

A five state model was developed, with an 
accessory estimation of measurement noise made using 
a recursive estimate of measurement variance (eq 4). 
The velocity and acceleration of N was used to define 
confidence in the estimate. Error bounds for the 
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prognostics were based on the 5% and 95% of load, and 
5% and 95% of bound on the estimate of a. 

4.1 PHM Test Article 

As a result of several helicopter accidents in the 1990s, 
the United Kingdom Civil Aviation Authority 
mandated vibration health monitoring (VHM) systems 
in June of 1999 (CAP753, 2006).  As a result, the 
helicopter industry has matured this technology faster 
than in the industrial market. The helicopter industry 
has close to 30 years development in VHM, with over 
1200-installed systems: a large database of faults is 
being developed.   
 There are a number of similarities between 
helicopter transmissions and wind turbines: similar gear 
ratios (80:1) and through put power. As such, we are 
demonstrating prognostics with the hydraulic pump on 
a utility helicopter. This component is driven at 
constant RPM by an auxiliary gearbox off of the drive 
train gearbox. The helicopter has a VHM system that 
generates condition indicators (CIs) associated with the 
hydraulic pump drive shaft, but was not configured to 
measure health of the hydraulic pump. While reviewing 
VHM data, it was observed that the time synchronous 
average (TSA) RMS where trending upward. The shaft 
order 1, 2 and 3 values (which give indications of shaft 
condition) where nominal. Along with CI values, raw 
time domain data was also collected on this shaft. 
Analysis of this time domain data showed that the 
elevated TSA RMS was driven exclusively by a 9 per 
rev (acceleration corresponding to 9 time the shaft 
RPM), which is associated with the 9 piston hydraulic 
pump driven by this shaft. The peak-to-peak 
acceleration of the pump was seen to be up to 30 Gs’ 
prior to failure.  

Because there are no vibration-based limits applied 
to this component, we can set a limit that would be 
appropriate for industrial monitoring, such as .75 inch 
per second (ips) peak-to-peak. Given the shaft 
operating speed of 11,806 RPM, the conversion from 
RMS to ips peak-to-peak is: 

! 

HI = TSA RMS * 32.174 ft sec2 *12in ft / 2"( )*

60sec/min/11806rpm* 2 /9rev
= TSA RMS *0.049     

Figure 3 displays the raw pump and state observer 
health vs. flight hours. 

 
Figure 3 Raw CI and State Space for CI 

 
Figure 4 is the RUL of the pump. Prior to time 100, the 
RUL is effectively infinite because dH/dt is close to 
zero. At time 120, corresponding to an increase the in 
pump HI value, the RUL decreases rapidly. At time 270 
(55 remaining flight hours) the estimated RUL tracks 
with the actual RUL 

 
Figure 4 Pump Actual and Estimated RUL 

 
The derivative of the RUL is given in figure 5. An 
automated maintenance action could be triggered based 
on the dRUL/dt is close to -1, reporting hours 
remaining. 
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Figure 5 Derivative of Estimated RUL 

The derivative converges to a value of -1 at 270 to 300 
hours (pump failed at 335 hour). Consider that the CI is 
not a direct measure of any feature on the hydraulic 
pump. With a CI directly measuring SO9, one could 
assume that the prognostics capability would be 
increased. 

4.2 Confidence in the Prognostics 

In practice, a PHM system would be used to schedule 
maintenance or assist is assets management. The 
Maintainer or Operator will need an intuitive, simple 
display that conveys information on: current health, 
RUL, and confidence in the RUL prediction. The state 
space model contains all of the information needed to 
support a PHM process, by: 

• Giving a bound on error. The state space 
covariance and current state health is used to 
bound the RUL by 5% to 95% and to project 
he expected condition of the component out 
into the future.  

• The state space model fit (e.g. dRUL/dt = -1) 
is used to validate the model and give a visual 
cue that the prognostic has value. 

Using state space model, the component condition is 
plotted over a window of 100 hours of past history to 
100 hours into the future (this length scale is based on 
the logistic timeline of the component. For example, 
100 hours of flight time is approximately 1 month. For 
wind turbines, 2000 hours may be more appropriate).  

 
Figure 6 Prognostics with Error Bounds at time 107 
Hours 
 
Figure 6 displays the hydraulic pump health at time 107 
hours, as the component fault just starts to propagate. 
Figure 7 shows the state space model at time 204 hours.  
The model confidence has improved (blue line) 
indicating that dRUL/dt is approaching -1. The bounds 
on error have increased, reflecting increased 
measurement noise of the system. 

 
Figure 7 Prognostics with Error Bounds at time 204 
Hours 
 
Figure 8 shows the prognostic at time 284 hours, with 
approximately 55 hours of remaining life. The 
prognostic suggests that if the component was operated 
at a lower power setting (e.g. at 45% torque vs. a 
nominal 60% torque) the component life could be 
extended to 100 hours.  
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Figure 8 Prognostics with Error Bounds at time 284 
Hours 
 
The ability to see the effect of operating condition on 
the life of a part is a powerful management tool. Note 
the prognostic is remarkably close to the actual fault 
propagation trajectory once the model has converged.  
 The ability to reconstruct the damage or 
component state and to estimate RUL using the Paris’ 
Law fault propagation model is robust. It requires only 
one a priori configuration item: a value for plant noise.  
Equally important to the PHM system is a means to 
quantify model fit and confidence, which is 
conveniently calculated from the first derivative of 
RUL.  
 An explanation as to why the model did not 
converge until 270 flight hours could be a result of the 
CI not directly measuring SO9. Initially, the TSA RMS 
is driven by shaft order 1, 2, 3, and a 92/rev spur gear. 
The performance likely would be improved using only 
SO9 amplitude data. At some future point, this may 
become a new CI for this component, which would 
result in a better model fit and a corresponding increase 
in prognostic capability. 

5 CONCLUSIONS 

Evaluation of component health or the ability to predict 
incipient failure remains difficult. State space modeling 
may be shown to facilitate the maturation of PHM 
system to allow robust condition monitoring and 
prognostics capability. In this paper, we apply the 
concept of a state space model, taken from control 
theory, as tool for developing a PHM system.  
 Presented are techniques taken from of control 
theory to “observe” hidden states associated with 
component health. This technique has been show to 
work with high speed input shafts, bearings (real world 
and test stand see (Bechhoefer 2008)) and complex 
device, such as the hydraulic pump. It is anticipated 
that similar performance would be observed with gear 
failure.  

 The power of the techniques is in the generality of 
the approach and the ability to successfully determine 
the remaining useful life with limited data. In one 
example, only signal average RMS from a hydraulic 
pump is used to predict failure 55 flight hours in the 
future. While this technique appears a step closer to 
achieving reliable prediction of remaining useful life, 
addition work needs to be done to implement in a 
system. The next goal would be to implement in an 
actual PHM on a wind turbine. 
 Over the next two years, we will work toward 
engaging a customer to demonstrate this capability on a 
wind turbine. 
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